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Annual Summary Report

Award Number W81XWH-04-1-0462
Pl: Woo-Hyun Park, Ph.D.

Introduction

Jn this project, we study the inter-relationship of BRCA1,and FANCD?2, and we have made

considerable progress toward completion of the specific aims, BRCAI is the breast-specific tumor

suppressor protein 1. FANCD2 is the Fanconi Anemia protein D2. Both proteins execute vital functions

In this project, we hypothesize that
BRCA1-dependent ubiquitination activity modifies FANCD2, and the resulting change in the FANCD2

causes a change in its activity and affects the DNA repair process.
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in the repair of DNA damage, but how this occurs is unknown.
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protein encoded by this gene has
many biological activities including
transcription, chromatin remodeling,
centrosome replication, and
especially repair of DNA damage.
BRCAL associates with numerous
proteins that repair DNA damage.
Fanconi Anemia (FA) is a rare
autosomal recessive disorder. It has
been shown that BRCA1 regulates
one of FA proteins, called FANCD2,
by a process called ubiquitination.
However, exactly how the FA

proteins and BRCAL1 interact to

‘ regulate DNA damage repair obscure.
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Figure 1. FANCD2, FANCA and BRCA1

DPurified proteins were subjected to SDS-PAGE analysis. FANCD2 protein migrated at 160 kD (left »_,"U
panel), consistent with its predicted mass, and immunoblot analysis revealed that this polypeptide was
indeed FANCD?2 (middle panel). FANCA and BRCA1/BARDI were also purified from baculovirus- " o
infected insect cells and analyzed by SDS-PAGE and Coomassie stain. -"// !
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Since Holliday junction DNA is a potential intermediate in the

homologous recombination pathway, we tested this structure first. In an
electrophoretic mobility shift assay (EMSA), full-length FANCD2
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diffuse bands that migrated progressively slower in reactions with higher FANCD?2 concentrations. This

finding was most consistent with the interpretation that the protein-DNA complex contained multiple
FANCD?2 molecules. Since the stoichiometry of DNA binding could not be determined, we did not
determine a K4 for the complex. Instead, we estimated binding affinity by the concentration of FANCD2
protein that bound half of the probe. Approximately half of the Holliday junction DNA probe was bound

in reactions containing 15 nM FANCD2.

The specificity of DNA binding was determined using various probes and DNA competitors.

not shown). When using a 65 bp linear DNA probe, 50% of the probe was bound at about 20 nM
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Figure 4, FANCD?2 binds to various DAN forms
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FANCD2, indicating that the binding affinity of FANCD?2 to linear 65 bp was modestly decreased
relative to the 125 bp Holliday junction probe. By competition analysis (Figure 4B). we found that ____
FANCD?2 bound to Holliday junctions and to DNA ends.

Surprisingly, ends on short DNA molecules
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did not bind to FANCD?2 (not shown), but DNAs containing an end and about 500 bp DNA were

effective in binding.

Plans for this task will include the analysis of how ubiquitination by BRCAI affects the DNA =

binding activity of FANCD2.

Deleted: We tested the specificity
of FANCD? for different forms of
DNA using competition reactions.
The probe in each reaction was 1 ng
of the 125 bp Holliday junction DNA.
A five-fold excess of self competitor
resulted in a 35% reduction of the
bound probe (Fig. 5). A 40-fold
excess of self competitor resulted in
nearly complete competition (lane 4).
Supercoiled plasmid DNA competed
modestly with the Holliday junction
probe for binding to FANCD2
(Figure 5B, lanes 5, 6). By contrast,
when this same plasmid was cleaved
at a single site generating an
approximately 5000 bp linear DNA,
the level of competition was similar
to the self competition (Figure 5B,
lanes 7, 8). Since the principal
difference between the supercoiled
plasmid and the linear DNA was the
presence of DNA ends, we tested
whether a higher concentration of
DNA ends bound to FANCD2 with
higher affinity. Cutting this
plasmid at a total of nine sites
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Purification of FANCA and FANCD?2 from insect cells.

Making the FANCA and FANCD?2 stable cell lines.

Establishment of in vitro ubiquitination using the BRCA1/BARD, E1, E2, ubiquitin, FANCD2

Understanding that BRCA1 is an important for FANCD?2 function but is not essential for
ubiquitination of FANCD?2

Finding the direct DNA binding activity of FANCD2 protein
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Conclusions

During the first year of the award from the Department of Defense Breast Cancer Research, -~
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Program, we have established the in vitro ubiquitination assay using the BRCA1/BARDI, E1, E2 and
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Exactly How BRCA1 mutation causes breast cancer is unclear. Evidence suggests that
the repair genomic damage is important, and BRCA1 is known to modify the FANCD2
protein. This basic research project will identify a key regulatory function of BRCA1 and
will identify an important pathway, which is altered in breast cells that acquire BRCA1
mutations. Thus, the project will reveal clues that are relevant for the etiology of breast
cancer.
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shuttle vector, pFB1 or in the retrovirus shuttle vector, pBabe. We made the
baculovirus having FANCA and FANCD2 genes using the insect cells and made the
retrovirus having FANCA and FANCD?2 genes using the 293T cells. We succeed in
purification of full-length FANCA and FANCD?2 from the infected cells using the IgG
sepharose and TEV protease (Fig. 1.). Also, we could purify the BRCA1/BARDI1
complexes from insect cells
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Similar to as described above for the baculovirus, we observed the expression of the
exogenous FANCD2 and FANCA protein in the 293T packaging cell for retrovirus. (Fig.
2.). Also, we could make the stable cell lines (Hela and MCF 10A(Breast Cell))
expressing the FANCD2 and FANCA proteins and observe the expression of those
proteins. However, when we purified the FANCA and FANCD2 complexes from Hela
and MCF10 cells, we could not observe other FANC proteins such as FANCC, FANCF,
FANCE and FANCG. The obstacle to see other FANC proteins in FANCA complexes
maybe results from (1) low expression of FANCA protein in Hela cells, (2) low amount
of FANCA complexes from cells and (3) using wrong biochemical buffers during
immunoprecipitation and washing etc. We hold this task now.
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Figure 1. Purification of FANCD2, FANCA, and BRCAl/BAARDl from baculovirus-
infected insect cells.
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, similar to the published report
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stimulates or represses the ubiquitination of FANCD2, we put together the FANCA,
FANCD?2 and BRCAL1 into the test tube. There was no big difference of efficiency of
ubiquitination by FANCA
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We tested the specificity of FANCD?2 for different forms of DNA using

competition reactions. The probe in each reaction was 1 ng of the 125 bp Holliday
junction DNA. A five-fold excess of self competitor resulted in a 35% reduction of the
bound probe (Fig. 5). A 40-fold excess of self competitor resulted in nearly complete
competition (lane 4). Supercoiled plasmid DNA competed modestly with the Holliday
junction probe for binding to FANCD?2 (Figure 5B, lanes 5, 6). By contrast, when this
same plasmid was cleaved at a single site generating an approximately 5000 bp linear
DNA, the level of competition was similar to the self competition (Figure 5B, lanes 7, §).
Since the principal difference between the supercoiled plasmid and the linear DNA was
the presence of DNA ends, we tested whether a higher concentration of DNA ends bound
to FANCD2 with higher affinity. Cutting this plasmid at a total of nine sites (average
size of the linear DNA was approximately 500 bp) made this dSDNA the most efficient
competitor tested for FANCD?2 binding. Nearly complete competition for the Holliday
junction probe was observed with a five-fold excess of the 500 bp linear DNA (Figure
5B, lane 9). In lanes 5-10, the competitor DNAs were all derived from the same plasmid
with the only difference being the number of ends: 0, 2, or 18. These results supported
the notion that the FANCD?2 binds to DNA ends.
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In most of the experiments in Figures 4 and 5, the probe was Holliday junction
DNA. FANCD2 binding to the Holliday junction DNA could be due to binding to ends
(four ends per molecule) or due to binding to the internal part of the Holliday junction.
We directly compared which of these DNA structures bound to FANCD?2 with higher
specificity. The competitor DNAs were normalized by the moles of DNA ends of
unlabeled Holliday junction DNA or 65 bp linear duplex DNA included in reactions with
Holliday junction probe. The linear duplex DNA was equivalent in length to two arms of
the Holliday junction probe. In this experiment, 1 ng of Holliday junction probe was
used; thus, the concentration of the probe was 1.2 nM, but since it had four ends, the
concentration of dSDNA ends was about 5 nM. Significant competition for DNA binding
by FANCD2 was apparent when reactions contained 25 nM Holliday junction ends (5 ng
DNA; Figure 6, lane 3), but there was very little competition for binding when reactions
contained 200 nM 65 bp duplex DNA ends (lane 10). This result suggested that for DNAs
of similar size, FANCD2 bound to the Holliday junction DNA with higher affinity than it
bound to DNA ends. An alternative model for the specificity was that the ends of the
Holliday junction DNA were closely juxtaposed and favored binding of the FANCD?2
when compared to the linear DNA. Since FANCD2 bound to both, DNA ends and
Holliday junctions, the specificity of the DNA binding activity was consistent with a role
for FANCD?2 in the repair of double stranded DNA damage.
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A A DNA complex was
Fig. 6 observed as a diffuse band
that migrated with

progressively slower speed as more FANCD2 was included in reactions, we infer that
FANCD?2 binds to DNA as a multimer. The competition data were most compatible with
the model that the FANCD2 nucleated its binding on the DNA end, and the FANCD2
then spread along the length of the DNA. Thus, when comparing the three linear DNAs
tested for binding to FANCD?2, the 5000 bp linear DNA had too low a concentration of
ends, and the 65 bp linear DNA was too short, but the 500 bp linear DNA had the best
balance of DNA ends and length.
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FANCD?2, encoded by exon 44, is highly conserved among homologues in other
eukaryotic species and therefore this domain may have an important cellular function
required for MMC resistance. This domain is highly acidic, containing 12 acidic residues



out of 24 residues and is referred to as the “EDGE” domain. We purified a FANCD2
mutant, in which the first aspartic acid residue encoded in exon 44 was converted to
alanine (D1428A). In addition, we truncated the acidic domain of FANCD?2 (E44t) by
expressing a fusion protein, which encodes no exon 44. Complementation studies reveal
that expression of these mutants in FANCD2-deficient cells does not correct the FA
phenotype. A Fanconi Anemia patient-derived mutation, which has no exon 17, was also
expressed and purified (E17del). All three mutant FANCD?2 proteins were expressed and
purified similarly as was the wild-type protein (Figure 7A). Each of these protein
preparations was analyzed for binding to Holliday junction DNA (Figure 7B). Each
mutant form of FANCD2 bound to the DNA with an affinity similar to wild type protein.
Removal of an acidic domain, as in the E44t FANCD?2, would be predicted to increase
affinity of a protein for DNA, but clearly, the magnitude of the effect was very small. The
FANCD2 mutant D1428A did bind less avidly to the probe. While wild-type, E44t, and
E17del FANCD?2 each bound to 50% of the Holliday junction probe at approximately 15
nM protein, the D1428 A mutant bound to 50% of the probe at about 40 nM (Figure 7B).
This decrease in affinity of the mutant FANCD2-D1428A for binding DNA was small,
and not seen with the E44t truncated protein, in which D1428 was deleted. Further, the
patterns of the bands on the gel were similar when comparing the D1428A mutant with
the wild-type FANCD2. We thus conclude that these mutations, which are associated
with a Fanconi Anemia phenotype, do not significantly affect DNA binding properties of
the FANCD?2 protein.
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binding domain of FANCD2, we expressed and purified fragments of the protein. Data
from Figure 7 revealed that a 44 amino acid domain from 472-515 was dispensable for
DNA binding in the E17del mutant, and the 24 amino acid deletion from 1427-1451 in
the E44t mutant was also competent for binding Holliday junction DNA. We expressed a



number of FANCD?2 protein fragments, but in all cases the level of expression was low,
and many of the different fragments were insoluble under nondenaturing conditions (data
not shown). We did succeed in purifying the following FANCD?2 fragments: 35-339
fused to GST; 1-989; 1-472; 473-989; and 945-1451. The protein fragments containing
sequences 1-989, 1-472, and 473-989 all bound to the Holliday junction probes at lower
concentration than did the full length (Figure 8), suggesting an increased affinity for the
DNA. However, competition analysis revealed that all FANCD2 fragments bound to
DNA in a nonspecific fashion (Figure 8). No identifiable DNA binding motif is revealed
from the protein sequence. We conclude from these analyses that, with the exception of
small deletions as in Figure 7, nearly the full length of FANCD?2 is required for DNA
binding activity. Taken together about the binding data, this study reveals that the
FANCD?2 protein binds to Holliday junction DNA and to DNA ends. This is the first
biochemical activity identified for this key protein in the Fanconi Anemia pathway. This
activity is consistent with a role for the FANCD?2 protein in the repair of double stranded
DNA breaks. However, it is unclear how phosphorylation and ubiquitination of FANCD2
regulate this activity and more work will be required to determine how the FANCD2
protein functions in the repair of DNA damage.

Therefore, we will try to know the FANCD?2 protein functions in the repair of DNA
damage. In the mean while, we also try to know the BRCA1 function in regulation of
FANCD?2 or cooperation with FANCD2 in the DNA damage response, especially breast
cancer cell lines.
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